

Micro Air Vehicles

Defense Science & Technology Seminar on Emerging Technologies

Sponsored by the
Deputy Under Secretary of Defense for
Science & Technology
and the
Director, Defense Advanced Research Projects Agency

Friday, December 11, 1998

Arlington Hilton & Towers 950 North Stafford Street Arlington, VA 22203 (Ballston Metro Stop)

Dr. James McMichael Program Manager Tactical Technology Office (703) 696-2377 jmcmichael@darpa.mil

Micro Air Vehicles

MicroSTAR

Lockheed Sanders Kolibri

Stanford Research Institute

HIPERAV

Aerodyne

Black Widow

AeroVironment

Micro Air Vehicles

What is a Micro Air Vehicle?

- n Small Air Vehicle No Larger Than 15 cm. in any dimension.
- n Capable of Performing a Useful Military Mission at an Affordable Cost.

Technical Objectives:

- n Develop Flight Enabling Technologies
- n Develop and Demonstrate Micro Air Vehicles Capable of Sustained Flight and Useful Military Missions

Military Relevance:

- n Local, On-Demand Situational Awareness for Small Units
 - Recon., Bio-chem. detection, acoustic, ...
- n Enables New Missions in Emerging Warfighting Environments
 - Urban operations, building interiors
- n Potential Users: Army, Marines, Air Force, Navy, Special Operations Forces

MAV Provides "Over-the-Hill" Reconnaissance

- MAVs are Fully Functional Military Air Vehicles
- Local situational awareness for small units
 - · Platoon level asset
 - Eliminates latency
- 30-60 minutes, 1-10 km
- Day/night imaging

Easy to Operate

Low Cost

Ammo-like packaging

MAV/McMidhae

Approved for public release, distribution unlimited.

MAVs for Urban Operations

Why Micro?

- Organic Asset, Eliminates Latency
- Enables Completely New Missions
 - Urban canyons, building interiors, ...
- Vehicle weight Trades with Water, Ammo, ...
- Eliminates Logistics Tail
- □ Affordable (Even Attritable)
- Hard to Detect
- A DARPA-Hard Problem

MAV Propulsive Power

Component Size, Weight, and Power Requirements Must be Minimized

Maximize Endurance Parameter

- Maximize Aerodynamic Perfromance
- Thin cambered airfoils (low Re)

Maximize Propeller Efficiency

• Optimized size, speed & type may not suit operational needs

Power to fly =
$$W \left[\frac{C_D}{C_L} \right] \left[\frac{W}{S} \right]^{1/2} \left[\frac{2}{\rho} \right]^{1/2} \eta$$

Minimize Weight

Minimize Altitude

Minimize Weight

- component synergy
- microfabrication
- reduce fuel load
- maximize propulsion system energy density
- minimize payload

Minimize Wing Loading

- minimize wing loading
- large wing area
 - low aspect ratio

Technical Challenges

- Low Re Aerodynamics and Propulsion
- Light WeightPower and Propulsion
- Ultra-light sensors and communications
- Autonomy, navigation, guidance and control

Range

Covertness

Hover

High Degree of Integration and Multifunctionality

Evolution of Micro Air Vehicles

- Interest is growing exponentially
- Technical options increasing over time
- As functional capability evolves, so does operational spectrum
 - Balancing the two is a continuing challenge

■ Creating realistic expectations

